This book is a cross-cultural reference volume of all attested numerical notation systems (graphic, non-phonetic systems for representing numbers), encompassing more than 100 such systems used over the past 5,500 years. Using a typology that defies progressive, unilinear evolutionary models of change, Stephen Chrisomalis identifies five basic types of numerical notation systems, using a cultural phylogenetic framework to show relationships between systems and to create a general theory of change in numerical systems. Numerical notation systems are primarily representational systems, not computational technologies. Cognitive factors that help explain how numerical systems change relate to general principles, such as conciseness or avoidance of ambiguity, which apply also to writing systems. The transformation and replacement of numerical notation systems relates to specific social, economic, and technological changes, such as the development of the printing press or the expansion of the global world-system.
This book is a cross-cultural reference volume of all attested numerical notation systems (graphic, non-phonetic systems for representing numbers), encompassing more than 100 such systems used over the past 5,500 years. Using a typology that defies progressive, unilinear evolutionary models of change, Stephen Chrisomalis identifies five basic types of numerical notation systems, using a cultural phylogenetic framework to show relationships between systems and to create a general theory of change in numerical systems. Numerical notation systems are primarily representational systems, not computational technologies. Cognitive factors that help explain how numerical systems change relate to general principles, such as conciseness or avoidance of ambiguity, which apply also to writing systems. The transformation and replacement of numerical notation systems relates to specific social, economic, and technological changes, such as the development of the printing press or the expansion of the global world-system.