The book constitutes a basic, concise, yet rigorous first course in complex analysis, for undergraduate students who have studied multivariable calculus and linear algebra. The textbook should be particularly useful for students of joint programmes with mathematics, as well as engineering students seeking rigour. The aim of the book is to cover the bare bones of the subject with minimal prerequisites. The core content of the book is the three main pillars of complex analysis: the Cauchy-Riemann equations, the Cauchy Integral Theorem, and Taylor and Laurent series. Each section contains several problems, which are not drill exercises, but are meant to reinforce the fundamental concepts. Detailed solutions to all the 243 exercises appear at the end of the book, making the book ideal for self-study. There are many figures illustrating the text.
The second edition corrects errors from the first edition, and includes 89 new exercises, some of which cover auxiliary topics that were omitted in the first edition. Two new appendices have been added, one containing a detailed rigorous proof of the Cauchy Integral Theorem, and another providing background in real analysis needed to make the book self-contained.