Build software that combines Python s expressivity with the performance and control of C (and C++). It s possible with Cython, the compiler and hybrid programming language used by foundational packages such as NumPy, and prominent in projects including Pandas, h5py, and scikits-learn. In this practical guide, you ll learn how to use Cython to improve Python s performance up to 3000x and to wrap C and C++ libraries in Python with ease.
Author Kurt Smith takes you through Cython s capabilities, with sample code and in-depth practice exercises. If you re just starting with Cython, or want to go deeper, you ll learn how this language is an essential part of any performance-oriented Python programmer s arsenal.
- Use Cython s static typing to speed up Python code
- Gain hands-on experience using Cython features to boost your numeric-heavy Python
- Create new types with Cython and see how fast object-oriented programming in Python can be
- Effectively organize Cython code into separate modules and packages without sacrificing performance
- Use Cython to give Pythonic interfaces to C and C++ libraries
- Optimize code with Cython s runtime and compile-time profiling tools
- Use Cython s prange function to parallelize loops transparently with OpenMP