The main goal of this book is to describe various aspects of the theory of joint spectra for matrices and linear operators. It is suitable for a graduate-level topic course in spectral theory and/or representation theory. The first three chapters can also be adopted for an advanced course in linear algebra. Centered around the concept of projective spectrum, the book presents a coherent treatment of fundamental elements from a wide range of mathematical disciplines, such as complex analysis, complex dynamics, differential geometry, functional analysis, group theory, and Lie algebras. Researchers and students, particularly those who aspire to gain a bigger picture of mathematics, will find this book both informative and resourceful.
The main goal of this book is to describe various aspects of the theory of joint spectra for matrices and linear operators. It is suitable for a graduate-level topic course in spectral theory and/or representation theory. The first three chapters can also be adopted for an advanced course in linear algebra. Centered around the concept of projective spectrum, the book presents a coherent treatment of fundamental elements from a wide range of mathematical disciplines, such as complex analysis, complex dynamics, differential geometry, functional analysis, group theory, and Lie algebras. Researchers and students, particularly those who aspire to gain a bigger picture of mathematics, will find this book both informative and resourceful.
Hardcover
$79.99