The force of gravity acting over eons has provided the solar system with an intricate dynamical structure, much of it revealed by recent space missions. This comprehensive introduction to the dynamical features of the solar system also provides all the mathematical tools and physical models needed for a complete understanding of the subject. Clearly written and well illustrated coverage shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica(R) software package help students to fully develop their understanding of the subject. This volume provides an authoritative textbook for advanced undergraduate and graduate courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and nonlinear dynamics. Written by two leading figures in planetary dynamics, it is a benchmark publication in the field and destined to become a classic.
The force of gravity acting over eons has provided the solar system with an intricate dynamical structure, much of it revealed by recent space missions. This comprehensive introduction to the dynamical features of the solar system also provides all the mathematical tools and physical models needed for a complete understanding of the subject. Clearly written and well illustrated coverage shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica(R) software package help students to fully develop their understanding of the subject. This volume provides an authoritative textbook for advanced undergraduate and graduate courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and nonlinear dynamics. Written by two leading figures in planetary dynamics, it is a benchmark publication in the field and destined to become a classic.