Soft matter and biological systems pose many challenges for theoretical, experimental and computational research. From the computational point of view, these many-body systems cover variations in relevant time and length scales over many orders of magnitude. Indeed, the macroscopic properties of materials and complex fluids are ultimately to be deduced from the dynamics of the microsopic, molecular level. In these lectures, internationally renowned experts offer a tutorial presentation of novel approaches for bridging these space and time scales in realistic simulations. This volume addresses graduate students and nonspecialist researchers from related areas seeking a high-level but accessible introduction to the state of the art in soft matter simulations.
Novel Methods in Soft Matter Simulations
Soft matter and biological systems pose many challenges for theoretical, experimental and computational research. From the computational point of view, these many-body systems cover variations in relevant time and length scales over many orders of magnitude. Indeed, the macroscopic properties of materials and complex fluids are ultimately to be deduced from the dynamics of the microsopic, molecular level. In these lectures, internationally renowned experts offer a tutorial presentation of novel approaches for bridging these space and time scales in realistic simulations. This volume addresses graduate students and nonspecialist researchers from related areas seeking a high-level but accessible introduction to the state of the art in soft matter simulations.