This textbook contains a wealth of information essential for successful experiments at low temperatures. Early chapters describe the low-temperature properties of liquids and solid matter, including liquid helium. The major part of the book is devoted to refrigeration techniques and the physics on which they rely, the definition of temperature, thermometry, and a variety of design and construction techniques. The lively style and practical orientation of this text make it easy to read and particularly useful to anyone beginning research in low-temperature physics. Low-temperature scientists will find it of great value due to its extensive compilation of materials data and relevant new results from thermometry and materials properties, as well as many additional references to the recent literature. Problems are included. In addition, this edition also describes newly developed low temperature experimentation techniques and new materials properties.
This textbook contains a wealth of information essential for successful experiments at low temperatures. Early chapters describe the low-temperature properties of liquids and solid matter, including liquid helium. The major part of the book is devoted to refrigeration techniques and the physics on which they rely, the definition of temperature, thermometry, and a variety of design and construction techniques. The lively style and practical orientation of this text make it easy to read and particularly useful to anyone beginning research in low-temperature physics. Low-temperature scientists will find it of great value due to its extensive compilation of materials data and relevant new results from thermometry and materials properties, as well as many additional references to the recent literature. Problems are included. In addition, this edition also describes newly developed low temperature experimentation techniques and new materials properties.