The book deals with the many connections between matrices, graphs, diagraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorical properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix and Latin squares. The book ends by considering algebraic characterizations of combinatorical properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jorda Canonical Form.
The book deals with the many connections between matrices, graphs, diagraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorical properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix and Latin squares. The book ends by considering algebraic characterizations of combinatorical properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jorda Canonical Form.