Air Pollution Meteorology and Dispersion provides a concise yet thorough review of the basic theories, models, experiments, and observations of pollutant dispersal in the atmosphere. It offers the theoretical and empirical bases of frequently used dispersion models while emphasizing the limitations and uncertainties inherent in these models. Organized into twelve chapters, the material is presented in order of increasing difficulty. The first half of the book treats the basic tenets of air pollution modeling; the second half deals with the more detailed theoretical and observational aspects of dispersion. Sufficient background material on atmospheric structure, dynamics, and circulation systems and their importance to atmospheric dispersion is included for students who do not yet have a strong meteorological background. Turbulence and diffusion theories, such as gradient transport, statistical, and similarity theories, as well as analytical and numerical dispersion and air quality models, are also discussed. Problems and exercises are included in each chapter, making this an ideal text for undergraduate and graduate courses in atmospheric science and mechanical engineering.
Air Pollution Meteorology and Dispersion provides a concise yet thorough review of the basic theories, models, experiments, and observations of pollutant dispersal in the atmosphere. It offers the theoretical and empirical bases of frequently used dispersion models while emphasizing the limitations and uncertainties inherent in these models. Organized into twelve chapters, the material is presented in order of increasing difficulty. The first half of the book treats the basic tenets of air pollution modeling; the second half deals with the more detailed theoretical and observational aspects of dispersion. Sufficient background material on atmospheric structure, dynamics, and circulation systems and their importance to atmospheric dispersion is included for students who do not yet have a strong meteorological background. Turbulence and diffusion theories, such as gradient transport, statistical, and similarity theories, as well as analytical and numerical dispersion and air quality models, are also discussed. Problems and exercises are included in each chapter, making this an ideal text for undergraduate and graduate courses in atmospheric science and mechanical engineering.